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ABSTRACT 

The prediction of dipole sound from the diffraction of turbulence by the 
leading edge of a thick foil is made with the Kirchhoff integral for rigid surface 
scattering of the stagnation enthalpy. The incident field is determined from a 
volume integral and the rigid plane Green function using an equivalent form of 
Howe's (1975) acoustic analogy that is derived in terms of the mean free stream 
velocity and the fluctuating up-wash velocity found in Sears'(1941) analysis. A 
comparison of the measured and the predicted dipole sound made with the foil 
geometry and measured turbulence statistics from Paterson and Amiet (1976) 
shows good agreement. The thickness effect is incorporated in the governing 
Green function for the foil [Howe (1998a, 2001a)] and serves to exponentially 
attenuate the dipole sound pressure spectrum by the product of the convection 
wave number and half the maximum section thickness. The dipole sound from a 
foil cutting through a mean shear layer is then calculated using an acoustic 
analogy where the source has retained the mean shear term. The ratio of the 
dipole sound of the mean shear source to the source without mean shear from the 
earlier calculation is determined to be proportional to the ratio of the mean shear 
to the frequency of the sources. Estimates of the dipole sound with and without 
the mean shear source are made for Olsen and Wagner's (1982) experiment. 
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1.  Introduction 

An airfoil in a turbulent flow generates a net distribution of acoustic dipoles primarily at 

the leading and trailing edges. In these regions, the dipole surface normal stresses induced by the 

turbulence are not canceled by their images due to the surface curvature [Powell (1960), 

Meecham (1965)]. Sears (1941) modeled the incompressible unsteady lifting force associated 

with the dipoles by representing the foil as an acoustically compact two-dimensional strip. His 

analysis included a trailing edge Kutta condition and showed for fluctuating velocities much 

smaller than the free stream velocity that the unsteady lifting force was proportional to the 

product of the mean free stream velocity and the fluctuating "up-wash" velocity. The application 

of the Kutta condition essentially removed this edge's contribution to the incompressible part of 

the total unsteady lift for reduced frequencies greater than one (based on the chord length) 

[Howe (2001b)]. 

When the airfoil chord length is acoustically non-compact, the dipole sound produced 

from the diffraction of the turbulence by either the leading or trailing edge is subsequently 

"back-scattered" by the opposite edge of the foil. Landhal (1961), Adamczyk (1974), Amiet 

(1975), and Martinez and Widnall (1980) accounted for the back scattering by the trailing edge 

of the leading edge dipole sound for a surface without thickness. Roger, Moreau and Wang 

(2002) extended Amiet's (1975) solution with a second scattering correction term for application 

to a trailing edge noise problem. Howe (2001a) constructed a Green function to account for the 

multiple back scattering by both edges. The Green fiinction also included the dependence of the 

shape of the edge for the diffraction of the incident turbulence [Howe (1975)]. In practice, the 

use of a Green function to predict the dipole sound produced by the diffraction of a turbulent 

flow requires that the spatial distribution of the incident sources be prescribed and remain frozen 

within the diffraction zone. This "rapid distortion" approximation attributes the diffraction to the 

Green function and does not account for any interaction between the incident sources and their 

images [Howe (1999)]. This approximation is satisfactory as long as the turbulence fluctuations 

are less than 10% of the free stream velocity [Grace (2001)]. 

The acoustic analogy of Howe (1975) has been utilized with a shape dependent Green 

fiinction to estimate the dipole sound from the diffraction of the sources within turbulent 

boundary layers by trailing edges of various contours [Howe (1998a and b), (1988), (2000)]. 



Calculations of the shape dependence of the unsteady lift for turbulence encountering the leading 

edge have been restricted to numerical models with idealized representations of the flow acoustic 

source. The spatial domain formulation of the blade vortex interaction (BVI) models of 

Martinez and Rudzynsky (1997) and Grace (2001) predict a reduction in unsteady lift with 

increasing frequency for a thick foil relative to a foil without thickness. These trends agree with 

the leading edge dipole sound measurements made by Olsen and Wagner (1982) with airfoils of 

varying thickness. The BVI calculations are also substantiated by the difference between the 

measured dipole sound spectra from a NACA 0012 airfoil and the sound spectra predicted by a 

zero thickness theory [Paterson and Amiet (1976,1977)] as illustrated in Fig. 1.1. Paterson and 

Amiet ascribed the discrepancy between their theory and data to the thickness of the foil for 

convection wavelengths of the incident turbulence that were smaller than the foil thickness. 

Grace (2001) showed that calculations performed in the wave number domain of the unsteady lift 

response of thick foils to "gusts" incident to the leading edge do not capture the observed 

thickness dependence. 

The current work uses an acoustic analogy and a shape dependent Green function to 

predict tiie lifting dipole sound from the leading edge diffraction of homogeneous turbulence by 

a thick, symmetric foil at a zero angle of attack to the mean flow. The foil thickness, h, is 

restricted to being acoustically compact, (M„«l) while the chord length, c, can be greater than 

an acoustic wavelength, X= In/ k^, (cka>l). 

In Section 2, the portion of the Howe (1975) aero-acoustic source that generates the 

lifting component of the dipole sound is expressed in terms of the mean free stream velocity and 

the fluctuating up-wash velocity that also arises in Sears' (1941) analysis. The source is tailored 

to be linear in fluctuating variables, without mean shear [Blake (1986), Howe (1989)] and 

spatially homogeneous. The near field of the quadrupole radiation on a rigid plane is then 

obtained from the volume integral of this source with the appropriate Green function. 
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sound (lines). Originally published in "Noise and Surface Pressure 
Response of an Airfoil to Incident Turbulence," by R. W. Paterson and 
R. K. Amiet, Journal of Aircraft, Vol. 14, No. 8, pp. 729-736, Fig. 4. 
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In Section 3, the leading edge lifting dipole sound produced by a foil is modeled by the 

Kirchhoff integral for rigid surface diffraction of the stagnation enthalpy. The Green function 

incorporates the effect of the foil thickness [Howe (1998a)] and the acoustic non-compactness of 

the airfoil's chord length [Howe (2001a)]. The incident surface stagnation enthalpy is expressed 

in terms of the mean velocity and the fluctuating up-wash velocity spectrum obtained from 

Section 2. This formula, along with the measurements of the incident flow turbulence reported 

by Paterson and Amiet (1976,1977), are used to predict the measured dipole sound for a 

NACA0012 airfoil (h/c=0.l2) and the corresponding zero thickness theory (h/c=0) for a variety 

of reported flow speeds. 

In Section 4, the acoustic source is tailored to be linear with respect to fluctuating terms 

and to contain the mean shear [Kraichnan (1956), Chase (1980), Blake (1986)]. This source is 

specified to be homogeneous, and the imposed surface pressure spectrum from the quadrupole 

radiation on a rigid plane surface is obtained. The calculated surface pressure spectrum for the 

mean shear flow, when combined with the results of Section 2, yield a prediction formula for the 

leading edge lifting dipole sound of a thick, acoustically non-compact foil cutting through a 

shear layer. Estimates of the measured leading edge dipole sound by Olsen and Wagner (1982) 

are made for incident sources with and without the mean shear term. These estimates establish 

the frequency below which the mean shear source dominates the source without mean shear. 



2.  Wall Stagnation Enthalpy Spectrum from Homogeneous Turbulence Without Mean 
Shear 

The stagnation enthalpy spectrum, B, imposed on a rigid plane (y„ 3^2= 0. Js) will be 

calculated from the quadrupole radiation of a spatially homogeneous turbulence field as 

illustrated in Fig. 2.1. The turbulent flow is specified to have no mean shear so that the resultant 

wall stagnation enthalpy spectrum will serve as the incident field that will be used in Section 3 to 

calculate the leading edge noise from homogeneous turbulence in the absence of mean shear. 

The radiating stagnation enthalpy, B, is described by the acoustic analogy of Howe (1975) for 

vortex sound 

V^B-^=-V.(i2xU), (2.1) 

where Q and U represent respectively, the sum of the mean and fluctuating vorticity and 

velocity. The stagnation enthalpy is expressed in terms of the acoustic pressure,/?, the fluid 

density, p, and the fluctuating velocity, u: 

B=jdp/p + 0.5u\ (2.2) 

The component of the hydro-acoustic source that contributes to the Ufting dipoles with 

axes aligned normal to the free streamlines [Blake (1986), Howe (1989)] shall be used to model 

the incident source 

V-(n'xC/')=|-(n'3X[/,)(y,0. (2.3) 

The primed (') variables are in the time domain, and the subscripts 1,2 and 3 denote 

respectively the streamwise, spanwise, and surface normal directions. The source is linear with 

respect to the fluctuating terms, and only the spanwise vorticity, Q3, contains the fluctuating 
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components of the source. The subsequent planar wave number spectrum of the near field 

radiation is given by Blake (1986) 

1      fff               d                              tt           ^-'A3*u+'V 
^'"'^^'J^ Jji^^0')^("3 ^U,){y,co)\\d\,^ , (2.4) 

where the unprimed variables have been Fourier transformed from time to frequency and 

*^i,3 = iK h\ ^1.3 = (^1. Xi), d^Xi,3=dXidxy When the in-plane Fourier transform of the Green 

function 

J_ JJ  I_e-"i3^.3j2 .£    -,,,,,^3 

is substituted into Eq. (2.4), the stagnation enthalpy wave number spectrum becomes 

1     fff r) JyirW 
**•""= O^ Wi/VO-j-CQ,xf/,),-i^e-«'.». . (2.6) 

where 

and k^ =(0/c^, is the acoustic wave number. Rearranging the terms of Eq. (2.6), 

^(^'«) = ^ illydy,d\,e-''^rn. j_^^^ ^U,){y„y,,y„co)i'^ (2.7) 

while taking the Fourier transform of the source variables with respect to the in-plane 

coordinates (denoted by the over bar): 



(n,U,)(k,„y„(0)= fl d\,-^e-"'^'-ia,U,)iy,,y„y„(o) (2.8) 
^ (2;r) 

and upon substitution of Eq. (2.8) into Eq. (2.7), in the absence of mean shear, yields the 

following expression for the wall stagnation enthalpy wave number spectrum: 

B{k,co)= ] dy,U,-^{Q,{k,„y„m))i— . (2.9) 

Howe's (1975) acoustic source in Eq. (2.9) can be expressed in terms of the fluctuating 

up-wash velocity, U2, and free stream velocity, f/j. The solenoidal velocity wave number 

spectrum can be expressed in terms of the vorticity wave number spectrum [Howe (1998a]: 

uik) = ikxQ(k)/\k\ 
(2.10) 

The up-wash velocity wave number spectrum becomes: 

M2(ik)= Kk.xCl^m^nk? . (2.11) 

Rearranging Eq. (2.11), 

^—U,u^{k)=-i{Cl^{k)xU,\ (2.12) 

and taking the inverse Fourier transform Eq. (2.12) with respect to ^2^ 

dk2e"^'''ii-^^U^U2ik„k2,k„(0)) = n^ik„y2,k„0)JJ, (2.13) 



and then substituting Eq. (2.13) into Eq. (2.9), yields the wall stagnation enthalpy wave number 

spectrum: 

B(k,co)= J dy,-^{ J dk,e"^y^(r-^UMKA^k„(o))}i^ . (2.14) 

In the absence of mean shear, Eq. (2.14) becomes: 

Mrw  *~ 
Bik,CO)= J ^3'2'—7r{ J ^fc20-^2y*^M/^f/,"2(/:„*„fc3.6»)} 

The complex conjugate (*) of the wall stagnation enthalpy. 

fi (/:,fi))= J dy2(-i)-r-r-{]dk2Hk\)e-''^H-i-^^ 
0 y(K)   _„ ^1 (2.16) 

with Eq. (2.15) enables the wall stagnation enthalpy wave number spectrum to be determined 

^BB(f^'(o)S(k-k')6iQ)-a)')=< B(,k,(0)B\k' ,(o')> (2.17) 

where the angle parentheses (< >) signify an ensemble average. Substituting Eqs. (2.15) and 

(2.16) into (2.17) gives the wall stagnation enthalpy wave number spectrum 

+~     +~      +~ - . 

^..(^.3,«)= J dy,]dy,[j dk,e^'y^-y^'Ul!^{k^ + kl + klf^^^^^{k,,,,(o)f . ^^'. (2.18) 
0       0       — 'n I y\k) I 

where the up-wash power spectrum is also obtained as in Eq. (2.17): 

^u,uS^,o>)5{k-U)5{co-c6)=<u^{k,(o)u2(Jc,(0)>. (2.19) 

10 



In order to facilitate the integration of Eq. (2.18), the up-wash wave number frequency spectrum 

is expressed in a separable form, 

where all of the wave number spectra are normalized accordingly: 

+00 

ldkj(l)j(kj) = l. (2.21) 
—00 

The streamwise (1) and vertical (2) wave number spectra will use Corcos'(1963) representation: 

«^^=ITf^^*'*'=T7|^^ •'''"''"' •'''■'"'""■      ''■''' 

Referring to Fig. 2.1, the convection wave number k = -colU^ for aoO. The sign of the 

convection velocity has no bearing on the value of the radiated noise power spectrum. This will 

become apparent since all of the subsequent expressions for the incident surface pressure 

spectrum involve even powers of the streamwise wave number, k^. The spanwise (3) wave 

number spectrum will be approximated with a Gaussian form used by Blake (1971): 

^3 (jtj) = /3 f—; ; /3 «1AU, I CO . (2.23) 

Substituting Eqs. (2.22) into Eq. (2.18) and integrating Eq. (2.18) with respect to k^ yields: 

*BB(\3.»)= J dy2\ dy\Ul^,AK,v(^)\—r-7r^—-rz 
0      0 

«2«.v-.,..-..       ,^^^|.        ^z^ 

mt^\e-'y^-''^"'^{-l + 2k,'ll + 2e,ll-k,Y, -21<^klll-kllt)K)+ (2.24) 

2{-\+k^ll + kUlfKdiy^ - y\)lt - 2(-H- l^l] + klll)K8\y, - y\)l^ 

+2K8\y,-y\)r^]} 

11 



where S" is the nth order derivative of the delta function. The relationship between the 

convolution of the nth order derivative of the delta function, with a function,/, and the nth order 

derivative of/is given in Eq. (2.25) [Lighthill (1958)]: 

idyj(y,)5"(y,-y,) = (-irf''iy,)     0<y,<oo, (2.25) 
0 

If the integral scale is much smaller than the spatial extent of the turbulence, then the vertical (2) 

correlation function can be represented as a product of the integral scale and the delta function: 

e-^y^-y^''^=l,S{y,-y,);l,»lAUJa) = lAk:' . (2.26) 

Substituting Eq. (2.26) into the expression for the wall stagnation enthalpy wave number 

spectrum [Eq. (2.24)] yields; 

00 mk)r    k;K 

{hir^iSiy.-y^M-l + lk^ll + lklll-k^ll -2k,'e,l*-ktlt)7r)+ (2.27) 

2(-l+k,'l',+kll',fn5(y,-y,)t^-2(-l+k,'l',+k^l^)nSiy,-y,)l^ 
+2K6'\y,-y,)I^']} . 

The forms of the wave number spectra in Eqs. (2.22) and (2.23) yield peak values for the 

streamwise and spanwise wave number spectra at /tj= k, =-,+G)/U, and ^3=0, respectively. For 

ki>k^k3, the exponential phasor in Eq. (2.27) may be approximated as: 

nk)»ik,. 

Integrating Eq. (2.27) with respect to ^2, 

12 



g-2*>y2 

(hi I2 ill (-1 + 2fef/,^ + 2Jt3^/,^ -kUt - 2klklll - ktn )7C) + (2-28) 

2(-l+kM+klll)'7d^-2i-l+k^ll+klll)7t4k^i;'+27n6kUt]}   ■ 

and then integrating Eq. (2.28) with respect to yj yields the wall stagnation enthalpy frequency 

wave number spectram: 

{Z,[ /-' ih (-1 + 2k^ll + 2klll - k^lt - 2k^kllt - ktlt )7r) + (2.29) 
2(-l+k^ll+klllf7d^-2(-l+kfll + klll)7c4k^l^+2Kl6ktlf]}   . 

The wall stagnation enthalpy frequency spectrum is determined by integrating Eq. (2.29) 

with respect to k^ and ky Using approximate forms of the wave number spectra of the up-wash 

velocity facilitates the integration. Accordingly, since the streamwise wave number spectrum of 

the up-wash velocity [Eq. (2.22)] is peaked at the convection ridge, and since the rest of the 

integrand, denoted by/(jfci,it3), of Eq. (2.29) is varying slowly in this region, the streamwise wave 

number spectrum shall be represented as a delta function. Thus: 

\dk,f{k„k,)<l>,{k,)^\dk,f{k„k,)5{k,-K) = f[K,k,) . (2.30) 
—00 —00 

The wall stagnation enthalpy becomes: 

/g-(t3'3/2)' 1 1 1 

{/,[^^(/,(-l + 2Jt,^/^2fc3'/,^-fc:/^2/:,^/:3%^-fe3%^);r)+ (2.31) 

2{-\+klll-^klllfia^-2{-\+klll^klll)KAkll:^+2K\6kX]}  . 

13 



Integration of the wall stagnation enthalpy wave number spectrum with respect to k^ yields the 

wall point stagnation enthalpy frequency spectrum. This involves three types of integrals, I„(k^); 

n=0,2,4, where 

Approximating the error function, Erf{xyx for x<\, gives the first integral, /Q [n=0; Eq. (2.32)] 

/„=-eW3/2)'/^^|_l+£^[l/2^]J^^/2 = o.6. (2.33) 

The second integral, I^ [n=2; Eq. (2.32)] yields: 

h = ^(W^-e^'''^'''\lll4^^e^^'^'^''''klll4^Erf(\ll4^,)} . (2.34) 

Numerically evaluating I2 gives: 

7     2-1.12-1.36(1.12)^V^+1.36(1.12)'V^0.56    ^,,, 
'^ = ^rn:^ = O-^^c . (2.35) 

The third integral, I^ [n=4; Eq. (2.32)], becomes: 

^ ^ -/3[-4 + 2fc,%^-e^(*^^-)'(ik^%f'^V^4-.^(*^^-)^(it,%f "V^£rf^^ 

This simplifies to 

(2.36) 

14 



j^^  -^^^^^^"'3[-4+2(^3)^-e-^^-^^^^'(M3)'V^+^'^'^^''^>cO'V^-Q-56] •        (2.37) 
^K \Kh) 

Taking 

^3 = 1.12, 

/.= '4 
2(1.12)' 

[-4 +2(1.12)'-1.36(l.l2)'V7r+1.36(1.12)'V^-0.56], 

I, = l.\9kt. (2.38) 

Substituting the three integrals, /Q, h, h into the expression for the point stagnation enthalpy 

gives 

0^«(a))= £7^'0„„ (©)—{(-^[-0.6+2(1.12)^0.6+2(0.4)(1.12)'-(1.12)'0.6 
^ ^      2/r    (1.12) 

-2(1.12)'0.4-1.19(1.12)''];r) 

^'^   [-0.6+0.6(1.12)' +0.4(1.12)'f 
(1.12) 

8;r   _,. ,2.n^ /I 1o^2^. 2;rl6-0.6, [-0.6+0.6-(1.12)' + 0.4-(1.12)']+—-—2^}   . 
(1.12)'^ (1-12) 
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The component of the wall stagnation enthalpy power spectrum that contributes to the lifting 

dipole sound expressed in terms of the mean flow velocity and the fluctuating up-wash power 

spectrum becomes: 

^BB(Q>)=6AU^0^^^(O}). (2.40) 

16 



3.  Dipole Sound from a Thick, Symmetric Foil in a Turbulent Flow Without Mean Shear. 

In Section 2, the surface stagnation enthalpy, B, was calculated on a rigid plane due to the 

near field acoustic radiation from the component of Howe's (1975) acoustic source that gives 

rise to the lifting components of the dipoles. The source was specified to be without mean shear 

and was expressed in terms of the free stream velocity and the fluctuating up-wash velocity. In 

this section, the dipole sound, p,ad, due to the diffraction of tiiese sources by the leading edge of 

a thick, symmetric foil will be calculated using a rigid surface Green function, G(x,y,a)) and 

incident "blocked" surface stagnation enthalpy, B , that satisfies the Kirchhoff equation 

B..AxM = -- iJ^^y^^y^^^y^Gix,y,c,)dSiy), (3.1) 

where B,„a is the far field radiated stagnation enthalpy and y„ is normal to the surface and is 

directed into the fluid. At low flow Mach numbers, M, =UICQ<\, the radiated stagnation 

entiialpy, 5„rf, is related to the acoustic pressure in the far field, p^^, [Howe (1978)] 

where MJ^XylR)=MoR is the flow Mach number component in the observer direction. The 

acoustic pressure can then be determined in the far field from Eqs. (3.1) and (3.2): 

The coordinates for the radiation field are illustiated for a foil of thickness, h, chord 

length, c, and span, L, in Fig. 3.1. The foil encounters homogeneous turbulence with convection 

velocity, U=-U^. The cross section of the foil [Fig. 3.2(a)] shows that the turbulence flows past 

botii sides of the leading edge of the foil. The half-plane "slab" scattering geometry that is used 

to model the leading edge diffraction of the incident stagnation enthalpy [Eq. (3.3)] is given in 

Fig. 3.2(b). The incident stagnation enthalpy is imposed by the turbulence on both sides of the 
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foil. A leading edge Kutta condition is not applied and the vortical sources are prescribed to 

follow the potential flow streamlines associated with the foil geometry and the free stream 

velocity indicated in the figures. The surface of the foil is defined to have no discontinuities in 

the surface curvature. Even though the sources accelerate due to the curvature of the potential 

streamlines in the vicinity of the leading edge, it will still be assumed that the incident source 

wave number spectrum is peaked at the convection ridge associated with the velocity upstream 

of the leading edge. 

The dipole sound spectrum due to the diffraction of the incident turbulence by the leading 

edge shall be modeled using a surface pressure scattering formulation with Howe's (1998a and 

b) trailing edge Green function for a semi-infinite hard surface with thickness, h and rounded 

edge, 

JT Cg\x\        k^ 

where O", (x,o) and 0™^(G)) denote respectively the radiated acoustic pressure spectrum and 

the incident surface pressure spectrum. The right hand side of the equation has been multiplied 

by a factor of two in order to account for the two-sided mrbulent flow around the airfoil's 

leading edge. Referring to Eq. (2.27), incident sources at the convection wave number, 

k^ = colU^, and location, y^, normal to the surface have weighted contributions to the surface 

pressure spectrum that are exponentially attenuated by their product: 

(3.5) 

The thickness correction, in Eq. (3.4), 

^ (3.6) 

suggests that the sound generated by a foil with thickness, h, in a spatially homogeneous 

turbulence field can be alternatively represented by a foil with zero thickness where the incident 

sources are off-set from the surface in the surface normal direction by a distance equal to one 

quarter of the maximum section thickness, Iy2l> hi A. 
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Substituting Eq. (2.40) that relates the mean velocity and upwash velocity to the wall 

pressure stagnation enthalpy and Eq. (3.5) that gives the Mach number correction into Eq. (3.6) 

yields the leading edge dipole sound pressure spectrum due to the diffraction of the 

homogeneous turbulence: 

0;^(;,,^) .  ^Lsin-(0/2)sinyjr^_^,...>^^^.^.^^^  ^^^^^(^)^^ (3 7^ 

The multiple "back-scattering" of the acoustic waves generated by the leading edge 

diffraction of the turbulence by the edges of the foil occur when the chord length is finite but 

acoustically non-compact. Howe's (2001a) normalized Green function, Gj, shall be used to 

model this effect. This yields an equation for the dipole sound from the thick but acoustically 

non-compact airfoil in terms of the mean velocity and the up-wash velocity spectrum and 

spanwise integral scale: 

0™/(;c,a))« l^rCV j(i^)) '^ ^Ism^J0/2)siny^^-^,...)^^^ («)/3(«)/(;:).        (3.8) 

The normalized Green function is given by 

G,(..y,^) = l-^^-'-^"'^'^^-^^--^":"'"^^ , (3.9) 

where G^E, GTE, G^apiam represent respectively, the contributions from the leading edge, the 

trailing edge and the governing Green function for the "half- slab" diffracting surface used in Eq. 

(3.7). These are given by Howe (2001) with [Fig. (3.1)] d=\lf=itl2: 
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-^sin'^'(VA)(^*(y)g'*°<'"''> '^"<--''^^^^^Sn^?^^5^-(^Vw(^).     (3.U) 

fix) =Ax) +igix) are the Fresnel integral auxiliary functions whose approximations are given by: 

f(^)-        l + 0.926;c  1          

The predicted dipole sound from Eq. (3.8) shall be compared with the measured sound 

reported by Paterson and Amiet (1976) in Fig. 1.1. Accordingly, the reported up-wash spectrum 

will use the von Karman formulation for isotropic turbulence with an integral scale, Xf= 0.03 m, 

and a turbulence intensity, u^ /If = 0.045, 

*■■ •■ (^) = ^-^ n- • (3.13) "2«2 2nU 
[l+(A:,4A//3)']e 

The spanwise integral scale, /3(G)) will also use the von Karman formulation. 

hm=^ r(i/3) 
,r(5/6). 

(4X^cJ3f 

^ [3+8(UfkJ3)'].f+(4X^kJ3f ' 
(3.14) 

yielding the same result as the Corcos model or the Gaussian model for frequencies above 

300 Hz. r is the Gamma function with r(l/3)=2.68, and r(5/6)=l .13. 

The airfoil chord length is c= 0.23 m, the span is L=0.53 m. The thickness (h) to chord 

(c) ratio of the NACA foil is h/c=0.l2. The dipole sound in Fig. 1.1 was measured at a distance 

JC2=2.25 m from the mid-chord of the foil. The Mach number correction in Eq. (3.2) becomes, 

Mo«=0.05 M, and e=\i/=itl2. In Fig. 3.3 for hic =0 and in Fig. 3.4 for hic =0.12, the predicted 

dipole sound spectra are plotted using Eq. (3.8) at velocities of 40m/s, 60 m/s, 90 m/s and 120 

m/s. These predictions are compared at each velocity to the measured dipole sound from 

Paterson and Amiet (1976,1977). 
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4.  Dipole Sound From a Thick, Symmetric Foil in a Turbulent Flow With Mean Shear. 

In Section 1, the turbulence quadrupole source was specified to be without mean shear. 

These types of turbulent flows are typically generated by turbulent wake flows and jet induced 

shear layers that have had sufficient time to diffuse or by the outer portion of a Uirbulent 

boundary layer (TBL) flow. Conversely, wake and jet flows have regions of high mean shear 

before sufficient diffusion occurs, as do turbulent flows near their bounding surfaces. The 

portion of the acoustic source that contains the mean shear-Uirbulent (MS-T) source has been 

used to describe the quadrupole pressure radiation from turbulent shear flows that occur in TBL 

flows [Kraichnan (1956), Chase (1980), Blake (1986)] and jets [Moon (1975)]. In this section, 

the dipole sound due to a MS-T source incident to the leading edge of a thick foil will be 

modeled. 

Referring to Fig. 4.1(a), a foil of thickness, h, and chord length, c, encounters a turbulent 

shear layer, t/C/iCy2)/^>'2=const., where the shear layer is thicker than the foil thickness. The force 

induced by the diffraction of the turbulent shear layer by the leading edge is formulated as a 

Kirchhoff integral for the scattering of the incident surface pressure by a "semi-mfinite slab" 

with thickness, h, and rounded leading edge [Fig. 4.1(b)]. The modeling approach is identical to 

that described in Sections 2 and 3. In this section, the wall pressure spectrum imposed on a rigid 

plane will be calculated from the quadrupole radiation of the aero-acoustic source that has been 

specialized to be linear in fluctuating terms and to contain mean shear. This pressure spectrum 

can be used with the results of Section 2 to calculate the leading edge noise for a thick foil 

cutting through a shear layer that will be specialized to be spatially homogeneous. 

At low Mach numbers, the acoustic pressure, p, generated by the mean shear-turbulence 

(MS-T) source is described by the following acoustic analogy: 

^^_V=p-2p.^%. (4.1) 
dt " ^2 ^1 
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The pressure, p, and the fluctuating up-wash velocity, w'a, are in the time domain and are denoted 

by bold face type. The planar wave number spectrum of the wall pressure that is radiated by the 

acoustic source in Eq. (4.1) becomes 

.(..)=^E.v(..p.^-^jU£^ 
{iKf ■'•'•''' ^''   dy,        dy, 

where the pressure, p, and up-wash velocity, MJ. have been Fourier transformed to the frequency 

domain and are no longer in bold face type. 

The planar Fourier transform of the Green Function is given by 

Jkor ^iyiYW 
J_ ff £_e-'*u-u j2     ^ .£ ^-.fcu-yu (4.3) 
iTt^i   r '•'      rik) 

where 

y{k) = 4kl-l<^-kl (4.4) 

and K = (ofc„ k.^^H^M , y„3= CViJs). ^1.3= (^1.^3) > ^x,„=dx,dx,. Substituting Eq. (4.3) into the 

Eq. (4.2), 

Mfc«» = ^IIU.*u^-""-2pgf(......3.«.).-^ (4.5) 

and rearranging the terms of the integrand gives the following expression for the wall pressure 

wave number spectrum: 

pik,co) = -^ ] dy,2p^i'-^ fl   d\,e-''---^iy„y„y„(o) .      (4.6) 
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The Fourier transform of the fluctuating up-wash velocity with respect to the in-plane 

coordinates is denoted by an over bar 

+00 

-0,            [2K) 
(4.7) 

and Fourier transform of the derivative of the up-wash velocity is: 

{27t)                       dy, 
(4.8) 

Substituting Eq. (4.8) into Eq. (4.6) determines the wall pressure wavenumber spectrum 

?           dU  e'^^^^''    — 
p(k,(0)= J dy22p—M—--ikiU2iki,y2,k„(0) (4.9) 

and the complex conjugate of the wall pressure spectrum becomes: 

Pik,(0)= J dy22p-^i-i)^——i-ik,)u,ikuy2,k',,co). (4.10) 

The wall pressure power spectrum is then determined from the ensemble average of the pressure 

and its complex conjugate: 

^^pik,(0)5(k - k')S(,(0-(6) =< p(k,(0)P*ik',c6) > (4.11) 

yielding the wall pressure wave number frequency spectrum : 

<tM,.<») = *p'ldyJdy'^''^'''^^'^''\^^    Ik,   y y ^./"''^''•''" (4.12) 
0     0       o{y2     c(y2                            \y{k)r 
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The following separable form to the up-wash wave number spectrum, 

^„,„,(^.)'2.3'2.^3.«) = *(®)^l(^)^2(3'2.>'2)^3(^3) (4.13) 

will facilitate the integration of Eq. (4.12). The wave number spectra are normalized 

jdkj(l>j(kj) = l (4.14) 
—oo 

and the streamwise (1) and spanwise (3) wave number spectra will use Corcos' (1963) and a 

Gaussian form respectively: 

«^)=IT^|^^ *3(y = 4^;'. =l-4J,./0.. (4.15) 

The shear layer will be considered to be much thicker than the airfoil. In this context, 

this model will assume that the surface normal correlation length, /2=1.4t7^ /O), is much smaller 

than the thickness of the shear layer. The surface normal correlation function will accordingly be 

taken to be spatially homogeneous with correlation length Zj: 

R22(y2,y2,co) = Siy2-y2M(o) ■ (4-16) 

It is specified that the mean shear does not change significantly over the correlation 

length, I2. Upon insertion of Eqs. (4.13), (4.15) and (4.16) into Eq. (4.12) and integrating with 

respect to y'2, the wall pressure wavenumber spectrum becomes: 

0,,(it.,3,a)) = 4p^JJrf ^^  <^.,„So>MKMks)lM    .,,,,2      • (4.17) 
0       \  <^2   J In'^Jl 
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The wall pressure frequency spectrum is determined by integrating over Jk, and k^. 

Integration over the streamwise wave number, ^i, is facilitated by assuming that the correlation 

function in the streamwise direction is peaked at the convection ridge, jfe, =Jkj. The streamwise 

wavenumber spectrum can be approximated by a delta function 

<t>,ik,)»d(k,-k^). (4.18) 

yielding 

+00 

\     ^2      ) 
%u,(0))(t),(k,)l2(C0) 

giyiYiKyiyir'.i'c) 
(4.19) 

where 

r(^c)=A'-*c-*3«'A'+*3 • (4.20) 

Substitution of Eq. (4.20) into (4.19) gives the spanwise wall pressure wave number spectrum 

+•0 

^,,(k„a)) = 4p'ldy,k, 
f -. V 

I  ^ %uSo))(i)^(k,)i2io>y 
2      J 

-)'j[2V*7+*Fi 

K'+k', 
(4.21) 

The spanwise wave number spectrum is peaked at ^3=0. This allows the spanwise wave number 

correlation coefficient to be approximated by a delta function: 

<l>,(k,)»Sik,) (4.22) 

Insertion of Eq. (4.22) into (4.21) yields Eq. (4.23): 

idk,^pp(k„(a) = 4p'jdy 
dy 

+0° 

KuS(0)e-y^'''h{C0)\dk,^^ . (4.23) 
V      ''•^2      J k;+k] 
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Integration over the spanwise wave number yields the wall pressure frequency spectrum, 

^JG)) = 2p'\dy, I   ^ <I>„,«,(«)^''^'*^^2(«) (4.24) 
2     J 

and integrating with respect to y^ yields the point pressure spectrum for the mean shear source: 

V 

^..(«) = P' VP 
V   ^2   y 

^u,uMK%(o)) (4.25) 

The ratio of the point pressure spectrum from the mean shear-mrbulence (MS-T) source 

[Eq. (4.25)] to the source without mean shear (T-T) [Eq. (2.39)] is: 

:.Af5-r/„\ ( S,-, ^        Y 
d\J,  1 
dy^ 4.6® 

(4.26) 

This defines a cut-off frequency below which the dipole sound from the MS-T source should 

dominate the dipole sound from the source without mean shear (T-T). 

The leading edge dipole sound is determined by multiplying the ratio of the MS-T wall 

pressure spectrum to the T-T spectrum [Eq. (4.26)] by the dipole sound due to the T-T source 

[Eq. (3.8)]: 

O radMS-T 
PP 

\Gr{Kcsm.(M/)) P a?Lsin^(0/2)sinvA K ^-O^^KW,) 

(l+M^J 

dU,    1   ^ 
ydy^ 4.6G) 

K'CAXY 

6Ap'U^^„Aa))l,io))/{7t) 

(4.27) 

The dipole sound measurements made by Olsen and Wagner (1982) with airfoils in the 

shear layer of a 10 cm diameter round jet will be predicted using estimates of the incident 
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sources with and without mean shear from equations [Eq. (4.27)] and [Eq. (3.8)] respectively. 

The chord length, c, of the foil was 2.54 cm. It will be assumed that the wetted span of the 

airfoil, L, was equal to the jet diameter. The airfoil thickness to chord ratio ranged from 

0,032 <hlc< 0.375. The flow speed incident to the leading edge of the foil was 94 m/s and the 

integral scale was //=1.6 cm. The fluctuating velocity was 25% of the mean velocity incident to 

the leading edge of the foil. The mean shear, dUildy2=\12'ilstc was estimated from the mean 

velocity measurements of Wygnanski and Fiedler (1965) for a round self-similar jet. The sound 

pressure levels in one-third octave frequency bandwidths were measured at roughly ^2 = 4-57 m 

with e=yfi=n/2 from Fig. 3.1. The leading edge of the foil was four jet diameters downstream of 

the lip of the jet. 

The predicted narrow band sound pressure levels in dB re 20 micro Pa/Hz for both 

sources are plotted in Fig. 4.2 for a flow speed of 94 m/s. The predicted dipole sound spectrum 

from the mean shear source dominates below lOOHz. The dipole sound without the mean shear 

source is predicted for foil thickness-to-chord ratios of h/c= 0.032 and 0.375. Above 1 kHz, the 

thickness effect starts to attenuate the predicted dipole sound. 

Figure 4.3 shows the measured dipole sound from Olsen and Wagner (1982, Fig. 2a) in 

one -third octave bandwidths. The thickness theory accounts for the relative differences in the 

dipole sound for the foils as a function of thickness. The dipole sound is not measured below 

200 Hz where the predicted mean shear dipole sound should dominate. This may explain why 

the theory used by Olsen and Wagner (1982) was able to predict the leading edge noise for the 

thin airfoil without taking into account the mean shear source. The predictions made in Fig. 4.2 

violate the "rapid distortion" approximation since the turbulence levels are above 10%. The 

mean shear levels were estimated assuming self-similarity of the mean velocity profiles even for 

distances downstream of the jet exit as close as four jet diameters. 
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Figure 4.3   Measured dipole sound at 94 m/s in one-third octave bands, dB re 20 micro Pa 
(Fig. 2a, Olsen and Wagner, AIAA 82-4068). 
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5.  Conclusions 

The dipole sound due to the diffraction of homogeneous turbulence by the leading edge 

of a thick foil was calculated using the Kirchhoff surface integral with a rigid surface Green 

function. The Green function accounted for the foil thickness and the acoustic back scattering 

associated with the acoustically non-compact chord length. The surface stagnation enthalpy was 

calculated with a volume integral incorporating the rigid plane Green function and an equivalent 

form of the lifting dipole component of Howe's (1975) acoustic source that was derived in terms 

of the mean free stream velocity and the fluctuating up-wash velocity of Sears' (1941) analysis. 

The derivation of the equivalent form of the source required that the velocity field be solenoidal. 

An estimate of the dipole radiation was made using the foil geometry and measured grid- 

generated turbulence statistics from Paterson and Amiet (1976,1977). The predictions show 

good agreement with the measured dipole sound. This establishes that the square of the 

magnitude of Sears' function, S(ki,h), for a foil of thickness, h, can be expressed as 

l5(Jt„/r)P=l5(Jti)Pexp[-fei/i/2], (5.1) 

where S(ki) is Sears' function with h=0. 

The modeling approach requires that the incident sources obey the "rapid distortion" 

approximation. This requirement may be violated when the turbulence fluctuations are too large 

relative to the free stream geometry. When this occurs, the sources may interact with each other 

or their images. The RMS turbulence fluctuations of the validation data of Paterson and Amiet 

(1976,1977) were approximately 4.5% of the free stream. This is well within the limits (less 

than 10%) established by Grace (2001) to ensure that the sources do not deviate from the 

potential flow. Leading edge flow separation from a sharp edge may also cause the trajectories 

of the incident sources to deviate sufficiently from that modeled by the Green function. This 

modeling approach also required the use of the firozen flow approximation that is strictly 

applicable to constant velocity flows in the vicinity of the diffraction zones. The success of the 

dipole sound predictions suggests that the frozen flow approximation may be applied to steady 

flows whose potential flow streamlines exhibit curvature and consequential acceleration of the 

sources around an edge. Extensions of the modeling approach can be made to predict the affect 
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of foU camber on the dipole sound by incorporating this effect into the velocity potential of the 

Green function via a conformal mapping, as demonstrated by Martinez and Rudzynsky (1997) 

for the incompressible problem. 

The dipole sound from a foil cutting through a mean shear layer was obtained using the 

acoustic source that was tailored for mean shear sources. The incident surface pressure spectrum 

due to this source that is imposed on a rigid plane was calculated. The ratio of the dipole sound 

of the mean shear source to the source without mean shear was determined to be proportional to 

the square of the ratio of the mean shear to the frequency of the sources. This establishes a 

critical frequency below which the dipole sound from the mean shear should dominate and above 

which the dipole sound from the source without mean shear should dominate. This result has 

been reported for the frequency dependence of the mean shear and non-mean shear quadrupole 

sources associated with jet radiation (e.g., Moon (1975)). 

Estimates of the measured leading edge dipole sound by Olsen and Wagner (1982) were 

made with and without the mean shear incident sources. The frequency below which the mean 

shear source was estimated to dominate was lOOHz. The measured dipole sound was made for 

frequencies above 200 Hz. This may explain why the predicted dipole sound made by Olsen and 

Wagner (1982) agreed with the measurements even though they did not take into account the 

mean shear source. 
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